SYNTHESIS AND 20π -ELECTROCYCLISATION OF HEPTAHENDECAFULVADIENE¹⁾ - AN UNUSUAL SEQUENCE OF PERICYCLIC PROCESSES

Andreas Beck, Lothar Knothe, Dieter Hunkler and Horst Prinzbach * Chemisches Laboratorium der Universität, 7800 Freiburg i. Br., BRD

Upon thermal activation the newly synthesised heptahendecafulvadiene \underline{E} (= 3) is isomerised into the pentacyclic hydrocarbons $\frac{9}{11}$ (xylene, $t_{1/2}$ (150°C) ca.5min), the formation of which is explained by initial conrotatory 20-electron electrocyclisation followed by a cascade of $10\pi/6\pi$ -pericyclic processes.

The fulvadienes $\underline{A}-\underline{D}$ - not however \underline{G} (as dicyano-derivative) - regiospecifically undergo α, ω -electrocyclisation, irrespective of the number of π -electrons involved (12-18) ²⁻⁶) in the conrotatory sense ⁷). Synthesis and 20 π -electrocyclisation of the heptahendecafulvadiene \underline{E} (= 3, 4-(2,4,6-cycloheptatrien-1-ylideneethylidene)bicyclo[5.4.1]dodeca-2,5,7,9,11pentaene) are the subject of this communication.

After an unsuccessful attempt to prepare derivatives of $\underline{\underline{F}}$ by a pentafulvene \rightarrow heptafulvene ring enlargement in the pentahendecafulvadiene $\underline{\underline{p}}^{5}$, the parent molecule $\underline{\underline{3}}$ became

available in modest yield (15-20%, not optimised) through cycloaddition of the ketene $\frac{2}{2}$ ⁸⁾ to the aldehyde $\frac{1}{2}$ ⁵⁾. $\frac{3}{2}$ (red-brown crystals, m.p. 90-95°C, m/e= 270 (M⁺, 100%)), like most fulvalenes, is light- and air sensitive, but can be stored in the dark at -30°C. A relatively strong bathochromic shift of 39 nm is exhibited in the UV/VIS spectrum for the longest wavelength absorption (isooctane, 429 nm (ε = 25900)) as compared with the corresponding fulvalene $\frac{12}{2}$ ⁹⁾, while the ¹H-nmr data are, as expected, very similar and typically "fulva-

lenoid" (¹H-nmr(400 MHz, CDCl₃): $\delta = 0.99$ (d, 12E-H), 4.12 (dt, 12Z-H), 5.44 (mc, 6"-H), 5.60 (mc, 3"-H), 5.66 (mc, 4"-,5"-H), 5.77 (d, 2-,6-H), 5.90 (d, 1'-H)^{*}, 5.97 (d, 7"-H), 6.07 (d, 2'-H)^{*}, 6.25 (d, 2"-H), 6.27 (mc, 11-H)^{**}, 6.30 (mc, 8-H)^{**}, 6.31 (d, 5-H), 6.40 (d, 3-H), 6.79 (mc, 9-,10-H); J_{2,3}=J_{5,6}=J₁',2'=J₂",3"=J₆",7"= 12, J_{12E,12Z}= 11.2, J_{8,12Z}=J₁₁, 12Z = 1.5Hz)¹²⁾. From the fact that 2"-H is deshielded relative to 7"-H by 0.28 ppm and 3-H with respect to 5-H only by 0.09 ppm it is concluded - as in the case of <u>D</u> - that C-4 is deplaced from the C2C3C5C6 - plane to such an extent that the C4=C1'-double bond exerts the known anisotropic influence upon 2''-H, whilst the C2'=C1''-double bond does not marked-ly affect 3-H. With J_{1'2'}= 12Hz the s-trans-conformation (<u>3</u>) is clearly far preferred to the s-cis-conformation (<u>3</u>'). <u>3</u>, in contrast to the 'mixed' fulvadiene <u>D</u>, is not selectively protonated in CF₃CO₂H.

In degassed $5 \cdot 10^{-3}$ molar xylene solutions $\frac{3}{2}$ remains practically unchanged up to 100° C for several hours. At 150° C the red-brown colour gradually ($t_{1/2}$ ca. 5 min) becomes yellowbrown. After partial (30%, 50%) as well as after total conversion (in addition to polymeric material) two products are formed in a practically constant 2:1 ratio (40%, not optimised) (DC, ¹H-nmr): isomeric with $\frac{3}{2}$ (m/e= 270 (M⁺)) they are identified by elaborate ¹H- and ¹³Cnmr analyses (with extensive NOE measurements) as $\frac{9}{2}$ (pentacyclo [14.4.1.0^{1,3}.0^{4,14}.0^{7,13}] heneicosa-4,6,8,11,13,15,17,19-octaene, yellowish oil, λ_{max} (ethanol)= 335 nm (ε = 6500) and $\frac{11}{2}$ ((1 α ,4 β)-pentacyclo[14.4.1.0^{1,3}.0^{4,14}.0^{7,12}]heneicosa-5,7,9,11,13,15,17,19-octaene, yellow crystals, m.p. = 203-205°C, λ_{max} (ethanol)= 351 nm (ε = 11300)).

In line with arguments presented for the thermolysis of \underline{D}^{5} , the formation of $\underline{9}/\underline{11}$ is explained with the intervention of the common intermediates $\underline{5}-\underline{7}$, which result from an initial 20π -electrocyclisation via the <u>syn</u>-conrotational transition state $\underline{4}$ (which sterically profits from the helical $\underline{3}$ '-conformation), [1,9]-suprafacial H-migration and 10π -electrocyclisation. [1,5]-H-migration in $\underline{7}$ and homo-[1,5]-H-migration in its "bisnorcaradiene"tautomer $\underline{8}^{13}$ are the final (irreversible) steps ($\underline{11}$ could also arise via $\underline{10}$). The $3\beta,4\alpha$ configuration in the kinetically labile $\underline{5}$ and consequently the formally "symmetry-allowed" <u>syn</u>-conrotatory mode of cyclisation in $\underline{3}$ is firmly, albeit indirectly, cstablished: (i) The [1.9]-H-migration in $\underline{5}$ is only possible <u>anti</u> to the CH₂-bridge. (ii) The β -orientation of 4-H in $\underline{11}$ and consequently of the corresponding hydrogen in $\underline{8}$ follows from the NOE-experiments and the two hydrogens in the newly formed cyclopropane ring of $\underline{8}$ must be trans. Obviously, this peri- and stereospecificity ¹⁴⁾ is proven only to the limited extent of isolated products. That the 18π -version in <u>D</u> had taken the same <u>syn-con</u>-pathway underlines once more the dominance of steric factors. The <u>cis-fulvatriene</u> vinylogoues of <u>A-C</u>¹⁾ do

not show a comparable propensity for α, ω -cyclisation, what attests to the stereoelectronic advantages of the fulvadienes $\underline{A} - \underline{\underline{F}}(\underline{\underline{F}})$ for these unusual multi-electron electrocyclic processes ⁷⁾.

Financial support by the <u>Deutsche Forschungsgemeinschaft</u> and the <u>Fonds der Chemischen</u> Industrie is gratefully acknowledged.

- 1) Cyclic cross-conjugated bond systems, Part 45.- Part 44: O. Schweikert, Th. Netscher, L. Knothe, H. Prinzbach, Chem. Ber., in press.
- 2) H. Sauter, B. Gallenkamp, H. Prinzbach, Chem. Ber. <u>110</u>, 1382 (1977); R. Brand, H.-P. Krimmer, H.-J. Lindner, V. Sturm, K. Hafner, Tetrahedron Lett. 1982, 5131.
- H. Prinzbach, H. Bingmann, A. Beck, D. Hunkler, H. Sauter, E. Hädicke, Chem. Ber. <u>114</u>, 1697 (1981); cit. 1it.
- A. Beck, H. Bingmann, S. Kagabu, L. Knothe, E. Hädicke, H. Prinzbach, Chem. Ber., <u>116</u>, 1963 (1983).
- 5) A. Beck, L. Knothe, D. Hunkler, H. Prinzbach, Tetrahedron Lett. 1982, 2431.
- 6) A. Beck, D. Hunkler, H. Prinzbach, Tetrahedron Lett. 1983, 2151.
- 7) E.N. Marvell, "Thermal Electrocyclic Reactions", Academic Press, N.Y., 1980.

- 8) T. Asao, N. Morita, Y. Kitahara, J. Am. Chem. Soc. 94, 3655 (1972).
- 9) The 18π-heptahendecafulvalene <u>12</u> is prepared from bicyclo[5.4.1]undeca-2,5,7,9,11-pentaene-4-one ¹⁰⁾ and the ketene <u>2</u> in 82% yield (red-brown crystals, m.p. 104^oC, λ_{max}

(ethano1)= 390 nm (ϵ = 2300), ¹H-nmr(250 MHz, CDCl₃): δ = 0.52 (12E-H), 3.78 (12Z-H), 5.34 (d, 3(5)-H), 5.8-6.0 (m, 3'(6')-H), 4'(5')-H), 6.18 (2'(7')-H), 6.40 (m, 8(11)-H), 6.55 (d, 2(6)-H), 6.9 (9(10)-H); J_{2,3}= 12.0, J_{12E,12Z}= 11.2, J_{2',3'}= 10.5 Hz.- ¹³C-nmr(CDCl₃)¹¹: δ = 31.2 (C-12), 119.8 (C-3(5)), 122.0 (C-1(7))*, 123.3 (C-8(11)), 127.3 (C-4)*, 127.6 (C-4'(5'))**, 129.8 (C-9(10)), 131.1 (C-2(6)), 131.8 (C-3'(6'))**, 136.0 (C-1')*. It momentarily (25°C) adds tetracyanoethylene in a probably concerted [18+2]-anti-cis-fashion, the stereochemistry in the 1:1-adduct <u>13</u> (which rearranges to two [4+2]- adducts of the heptafulvene-part) is only unambigous at C-3 (δ_{3-H} = 4.87(C₆D₆), δ_{C-3} = 45.6(CDCl₂))¹².

- 10) W. Grimme, J. Reisdorff, W. Jünemann, E. Vogel, J. Am. Chem. Soc. 92, 6335 (1970).
- L. Knothe, H. Prinzbach, H. Fritz, Liebigs Ann. Chem. <u>1977</u>, 687; cit. lit; R.J. Hunadi, J. Am. Chem. Soc. 105, 6889 (1983).
- 12) A. Beck, L. Knothe, D. Hunkler, H. Fritz, H. Prinzbach, in preparation.
- 13) H. Dürr, K.-H. Pauly, K. Fischer, Chem. Ber. 116, 2858 (1983); cit. lit.
- 14) The deeply coloured 14 π azulenoid annulene $\underline{15}$, a potential product of a competing 14 π electrocyclisation ($\underline{14}$) - as observed at 400°C with dicyano- \underline{G}^{6}) -, was prepared inde-

pendently and would have been detected in minute quantities $(\lambda_{max}(C_2H_5OH) = 640 \text{ nm}; ^{1}H_{-nmr}(250 \text{ MHz}, [D_6]acetone):\delta = -0.24 (d, 13E-H), 0.90 (dt, 13Z-H), 7.11 (d, 11-H), 7.23 (dd, 2-H), 7.27 (d, 9-H), 7.38 (dd, 7-H), 7.45-7.51 (m, 1-,3-H), 7.53 (dd, 8-H), 7.60 (d, 6-H), 7.83 (d, 12-H), 8.72 (s, 4-H); J_{1,2}=J_{2,3}=5, J_6, 7=J_8, 9=8.0, J_7, 8=10.0, J_{11,12}=10.5, J_{13E,13Z}=11.2, J_{6,13Z}=J_{9,13Z}=1.5 \text{ Hz})$

(Received in Germany 7 February 1984)