SYNTHESIS AND ZOn-ELECTROCYCLISATION OF HEPTAHENDECAFULVADIENE ') -AN UNUSUAL SEOUENCE OF PERICYCLIC PROCESSES

Andreas Beck, Lothar Knothe, Dieter Hunkler and Horst Prinzbach * Chemisches Laboratorium der Universität, 7800 Freiburg i. Br., BRD

Upon thermal activation the newly synthesised heptahendecafulvadiene E (= 2) is isomerised into the pentacyclic hydrocarbons $\frac{9}{11}$ (xylene,t_{1/2}(150°C) ca.5min), the formation of which is explained by initial conrotatory 20-electron electrocyclisation followed by a cascade of $10\pi/6\pi$ -pericyclic processes.

The fulvadienes $\underline{A}-\underline{D}$ - not however $\ G$ (as dicyano-derivative) - regiospecifically undergo α, ω -electrocyclisation, irrespective of the number of π -electrons involved (12-18) $^{2-6)}$ in the conrotatory sense $7)$. Synthesis and 20m-electrocyclisation of the heptahendecafulvadiene E ($\equiv 3, 4-(2,4,6-\text{cycloheptatrien}-1-\text{ylideneethylidene})$ bicyclo[5.4.1]dodeca-2,5,7,9,11pentaene) are the subject of this communication.

After an unsuccessful attempt to prepare derivatives of E by a pentafulvene \rightarrow heptaful</u> vene ring enlargement in the pentahendecafulvadiene $\underline{\mathbb{P}}^{(5)}$, the parent molecule $\underline{\mathbb{P}}$ became

available in modest yield (15-20%, not optimised) through cycloaddition of the ketene $\frac{2}{5}$ $\frac{83}{5}$ to the aldehyde $1 \atop{}^{\text{D}}$. 2 (red-brown crystals, m.p. 90-95 $^{\text{o}}$ C, m/e= 270 (M $^+$, 100%)), like most fulvalenes, is light- and air sensitive, but can be stored in the dark at -30° C. A relatively strong bathochromic shift of 39 nm is exhibited in the UV/VIS spectrum for the longest wavelength absorption (isooctane, 429 nm (ε = 25900)) as compared with the corresponding fulvalene <u>12</u> 9 , while the $^{\rm{l}}$ H-nmr data are, as expected, very similar and typically "fulva-

lenoid" (¹H-nmr(400 MHz, CDC1₃): δ = 0.99 (d, 12E-H), 4.12 (dt, 12Z-H), 5.44 (mc, 6"-H), 5.60 (mc, 3"-H), 5.66 (mc, 4"-,5"-H), 5.77 (d, 2-,6-H), 5.90 (d, 1'-H)^{*}, 5.97 (d, 7"-H), 6.07
(d, 2'-H)^{*}, 6.25 (d, 2"-H), 6.27 (mc, 11-H)^{**}, 6.30 (mc, 8-H)^{**}, 6.31 (d, 5-H), 6.40 (d, 3-H), 6.79 (mc, 9-, 10-H); $J_{2,3} = J_5$, $6 = J_1$, $2! = J_2$, $3! = J_6$, $7! = 12$, $J_{12E,12Z} = 11.2$, $J_{8,12Z} = J_{11}$, $12Z = 1.5$ Hz)¹². From the fact that 2^{"-H} is deshielded relative to 7"-H by 0.28 ppm and 3-H with respect to 5-H only by 0.09 ppm it is concluded - as in the case of \underline{D} - that C-4 is deplaced from the C2C3C5C6 - plane to such an extent that the C4=C1'-double bond exerts the known anisotropic influence upon 2''-H, whilst the C2'=C1''-double bond does not markedly affect 3-H. With J_{112} , = 12Hz the s-trans-conformation (2) is clearly far preferred to the s-cis-conformation $(\underline{3}^1)$. $\underline{3}$, in contrast to the 'mixed' fulvadiene \underline{D} , is not selectively protonated in CF_3CO_2H .

In degassed $5 \cdot 10^{-3}$ molar xylene solutions $\frac{3}{2}$ remains practically unchanged up to 100^oC for several hours. At 150°C the red-brown colour gradually ($t_{1/2}$ ca. 5 min) becomes yellowbrown. After partial (30%, 50%) as well as after total conversion (in addition to polymeric material) two products are formed in a practically constant 2:1 ratio (40%, not optimised) (DC, 1_H -nmr): isomeric with 3 (m/e= 270 (M⁺)) they are identified by elaborate 1_H - and 13_C nmr analyses (with extensive NOE measurements) as $\frac{9}{2}$ (pentacyclo [14.4.1.0^{1,3}.0^{4,14}.0^{7,13}] heneicosa-4,6,8,11,13,15,17,19-octaene, yellowish oil, λ_{max} (ethanol)= 335 nm (ε = 6500) and 11 ((1a,4 β)-pentacyclo[14.4.1.0^{1,3}.0^{4,14}.0^{7,12}]heneicosa-5,7,9,11,13,15,17,19-octaene, yellow crystals, m.p. = 203-205^oC, λ_{max} (ethanol)= 351 nm (e= 11300)).

In line with arguments presented for the thermolysis of \underline{p}^{5} , the formation of $\underline{9}/\underline{11}$ is explained with the intervention of the common intermediates 5-7, which result from an initial 20m-electrocyclisation via the syn-conrotational transition state $\frac{1}{2}$ (which sterically profits from the helical 2'-conformation), [1,9]-suprafacial H-migration and 10w-electrocyclisation. [1,5]-H-migration in Z and homo-[1,5]-H-migration in its "bisnorcaradiene"tautomer $\frac{8}{5}$ ¹³⁾ are the final (irreversible) steps (11 could also arise via 10). The 38,4 α configuration in the kinetically labile $\frac{5}{2}$ and consequently the formally "symmetry-allowed" syn-conrotatory mode of cyclisation in 3 is firmly, albeit indirectly, established: (i) The [1.9]-H-migration in $\frac{5}{2}$ is only possible <u>anti</u> to the CH₂-bridge. (ii) The β -orientation of 4-H in 11 and consequently of the corresponding hydrogen in 8 follows from the NOE-experiments and the two hydrogens in the newly formed cyclopropane ring of § must be trans. Obviously, this peri- and stereospecificity 14) is proven only to the limited extent of isolated products. That the 18 π -version in D had taken the same syn-con-pathway underlines once more the dominance of steric factors. The cis-fulvatriene vinylogoues of $\underline{A}-\underline{C}$ ¹⁾ do

not show a comparable propensity for α , w-cyclisation, what attests to the stereoelectronic advantages of the fulvadienes A-E(F) for these unusual multi-electron electrocyclic processes ''.

Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

- 1) Cyclic cross-conjugated bond systems, Part 45.- Part 44: 0. Schweikert, Th. Netscher, L. Knothe, H. Prinzbach, Chem. Ber., in press.
- 2) H. Sauter, B. Gallenkamp, H. Prinzbach, Chem. Ber. 110, 1382 (1977); R. Brand, H.-P. Krimmer, H.-J. Lindner, V. Sturm, K. Hafner, Tetrahedron Lett. 1982, 5131.
- 3) H. Prinzbach, H. Bingmann, A. Beck, D. Hunkler, H. Sauter, E. H?idicke, **Chem.** Ber. 114, **1697 (1981); cit. lit.**
- 4) A. Beck, H. Bingmann, S. Kagabu, L. Knothe, E. Hädicke, H. Prinzbach, Chem. Ber., 116, 1963 (1983).
- 5) A. Beck, L. Knothe, D. Hunkler, H. Prinzbach, Tetrahedron Lett. 1982, 2431.
- 6) A. Beck, D. Hunkler, H. Prinzbach, Tetrahedron Lett. 1983, 2151.
- 7) E.N. Marvell, "Thermal Electrocyclic Reactions", Academic Press, N.Y., 1980.
- 8) T. Asao, N. Morita, Y. Kitahara, J. Am. Chem. Soc. 94, 3655 (1972).
- 9) The 18π -heptahendecafulvalene 12 is prepared from bicyclo[5.4.1]undeca-2,5,7,9,11-pentaene-4-one ¹⁰⁾ and the ketene $\frac{2}{3}$ in 82% yield (red-brown crystals, m.p. 104^oC, λ_{max}

(ethanol)= 390 nm (ε = 2300), ¹H-nmr(250 MHz, CDC1₃): δ = 0.52 (12E-H), 3.78 (12Z-H), 5.34 (d, 3(5)-H), 5.8-6.0 (m, 3'(6')-H), 4'(5')-H), 6.18 (2'(7')-H), 6.40 (m, 8(11)-H), 6.55 (d, 2(6)-H), 6.9 (9(10)-H); $J_{2,3}$ = 12.0, $J_{12E,12Z}$ = 11.2, J_{2} , 3 = 10.5 Hz. - 13 C-nmr (CDC1₃)

11): δ = 31.2 (C-12), 119.8 (C-3(5)), 122.0 (C-1(7))^{*}, 123.3 (C-8(11)), 127.3 (C-4)^{*},

127.6 (C-4'(5 It momentarily (25°C) adds tetracyanoethylene in a probably concerted [18+2]-anti-cisfashion, the stereochemistry in the 1:1-adduct 13 (which rearranges to two $[4+2]$ adducts of the heptafulvene-part) is only unambigous at C-3 ($\delta_{2\mu}$ = 4.87(C₆D₆), δ_{C-2} = 45.6(CDC₁₃))¹².

- 10) W. Grimme, J. Reisdorff, W. Jünemann, E. Vogel, J. Am. Chem. Soc. 92, 6335 (1970).
- 11) L. Knothe, H. Prinzbach, H. Fritz, Liebigs Ann. Chem. 1977, 687; cit. lit; R.J. Hunadi, J. Am. Chem. Soc. 105, 6889 (1983).
- 12) A. Beck, L. Knothe, D. Hunkler, H. Fritz, H. Prinzbach, in preparation.
- 13) H. Dürr, K.-H. Pauly, K. Fischer, Chem. Ber. 116, 2858 (1983); cit. lit.
- 14) The deeply coloured 14 π azulenoid annulene 15, a potential product of a competing 14 π electrocyclisation ($\underline{14}$) - as observed at 400°C with dicvano- $\underline{6}$ 6) -, was prepared inde-

pendently and would have been detected in minute quantities $(\lambda_{max}(C_2H_5OH)=640$ nm; 1H nmr(250 MHz, $[D_6]$ acetone): δ = -0.24 (d, 13E-H), 0.90 (dt, 13Z-H), 7.11 (d, 11-H), 7.23 (dd, 2-H), 7.27 (d, 9-H), 7.38 (dd, 7-H), 7.45-7.51 (m, 1-,3-H), 7.53 (dd, 8-H), 7.60 (d, 6-H), 7.83 (d, 12-H), 8.72 (s, 4-H); $J_{1,2} = J_{2,3} = 5$, $J_{6,7} = J_{8,9} = 8.0$, $J_{7,8} = 10.0$,
 $J_{11,12} = 10.5$, $J_{13E,13Z} = 11.2$, $J_{6,13Z} = J_{9,13Z} = 1.5$ Hz) 12 .

(Received in Germany 7 February 1984)